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1. Introduction

A primary objective in computer vision research is to construct image

understanding systems (IUS’s) which can analyze images based on object

models. Usually, an IUS analyzes images by constructing snterpretations in
¥ terms of the object models given to the IUS. Interpretation refers to the map-
k ping between objects (e.g., houses, roads) in the object model and image

structures (e.g., regions, lines, points) in the image. During the analysis, an

TUS needs to perform the following two types of tasks:

- segmentation : the task of grouping pixels together to construct
image structures that can be associated with objects in the given
model.

- interpretation : the task of constructing mappings between image
structures and objects.

Segmentation is practical when sufficient knowledge is available about the
image to be processed and the image structures to be computed. The base of
knowledge increases as the interpretation process develops, leading to more

constrained and therefore more reliable segmentation.

Many [US's were constructed in the late 1970’s ( [Barr81], [Ball82],
[Binf82] [Ball82].) Most systems integrate segmentation and interpretation

using one of the following types of analysis.

-1-




1) Bottom-up analysis: the image structures are extracted from the
image, and are interpreted as instances of the objects in the model.
For example, when a large rectangular region is extracted, inter-
pret it as a house.

; 2) Top-down analysis: the appearance of the object is first deter-
5 mined, and the associated image structures are extracted. For ex-
j ample, suppose an IUS wants to find a house; the TUS invokes the
) house model and establishes the descriptions of the specific image
h structures to be extracted from the image.

It is generally accepted that image understanding systems should incorporate

both bottom-up and top-down analyses. Some systems use only one type of
analysis. MSYS [Barr76] developed by Barrow and Tenenbaum used bottom-
up analysis. Image structures are first segmented from the image. A set of

initial labels are assigned to these image structures (based on height, homo-

geneity, etc.) Then, geometric constraints between labels are used to filter out
inconsistent labelings. Bolles [Boll76], on the other hand, used top-down

analysis. In his system , a goal is first constructed. The system then matches

. v—p—r——

5 the goal, which is represented as a template, with the image. A similar

approach is used in Garvey's [Garv76] system. Other systems (Hanson, Rise-
man [Hans78]; Matsuyama [Naga80]) incorporate both types of analysis but
use ad hoc rules to determine which type of analysis is to be used at what
stage during the analysis. Such systems often require a large set of domain

dependent control knowledge to direct the analysis of the ITUS.




o -
...................

It is the goal of this research to develop a robust control strategy for con-
structing image understanding systems, thus eliminating the need to use large
amounts of domain specific control knowledge in specific applications. In this
paper, we propose a general framework which enables IUS's to integrate both
bottom-up and top-down analyses into a single flexible reasoning process. We
construct an image understanding system, SIGMA, based on this framework
and provide demonstrations of its performance on images of a suburban hous-

ing development.

i 1.1. Integration of hypotheses

Considering the following proposition:

If a structure of type x is present in the scene having certain spa-
tial properties, then there should exist a structure of type y having
certain properties in the image.

It is often the case that what is known about x is not sufficient to completely
characterize y (i.e., we might be able to predict its size and color, but perhaps
not its orientation). In addition, there might be many x's, each predicting the
occurrence of y, but each contributing different constraints on the properties
of y.

For example, by locating a house in the image, one may predict the
occurrences of other objects, e.g., neighboring houses. Furthermore, the

discovery of a rectangular homogeneous region in the image may also generate
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a prediction of a house. It is usually the case (depending on the object model)
that each of these predictions provides some ‘‘cues’ about the occurrence of a
house and it is the integration of all these cues that may characterizes the

occurrence of a house adequately enough to easily recognize it.

Let us call the predictions about the occurrences of objects in the image
hypotheses. Suppose several hypotheses, which may be independently gen-
erated, are predictions about objects at the same location in the image. It is
reasonable to assume thai these hypotheses are predictions about the ‘‘same”
object, although each may only constrain some subset of the properties of the
object. By integrating these hypotheses, an TUS could construct a more com-
plete description of the object and use it to direct a more effective and

informed analysis.

1.2. An overview of the SIGMA image understanding system

Figure 1-2 shows the system architecture of the SIGMA image under-
standing system. The user provides object models to SIGMA, and the results

of the analysis are available to the user through a query-answering module.

The image is first segmented by a general purpose low level vision system
(LLVS). The segmentation results are recorded in the iconic/symbolic data-
base. The high level vision system (HLVS) uses the object model either to

interpret image structures already extracted or to direct the low level

processes to search for image structures not yet discovered. During the
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analysis, the HLVS incrementally constructs an interpretation network for the
input image. A ‘‘goal’ is given to the query-answering module (QAM). At
< the end of each analysis iteration, the QAM is activated and “matches’ the
current status of the analysis with the goal. This construction process contin-
ats until the “‘goal” is accomplished (i.e., a successful match between the
current status of the analysis and the goal) or no more interpretations can be
constructed. At this stage, the QAM provides the current status of the
analysis. In the following subsections, we present each module of SIGMA in

more detall.

1.2.1. The low level vision system

In SIGMA, the LLVS is formulated as a domain-independent goal-
directed segmentation system. A goal, which is described by a list of con-
straints on the image structures to be computed, is given to the LLVS. The

- LLVS uses general segmentation techniques to extract such image structures.
< Other systems have been constructed to perform goal-directed segmentation -

e.g., Selfridge [Self82] and Nazif & Levine [Nazi84].

Our approach differs from the approaches taken in these systems. We
assume that many specialized methods are needed to extract image features
from the image. An LLVS needs to select, from a pool, methods that best suit

the task. Furthermore, new methods are frequently developed that can aug-

ment or replace the methods currently used by the LLVS. It is important to
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design an LLVS so that adding methods to it is easy.

Our LLVS is based on a select-and-schedule strategy. When the LLVS is

asked to verify some hypothesis, it first selects those methods which are appli-

le by matching the hypothesis against a decision table. Then, the LLVS

schedules the selected methods according to their potential. If one method
fails to verify the hypothesis, the next method will be tried until the
hypothesis is verified or until all methods have been tried and have failed.
This approach is similar to the *‘blackboard” method [Davi77] and the ‘“‘con-
tract net” idea {Smit78]; but the implementation here is simpler. For a

detailed discussion of the LLVS, see [Hwan84].

.2. The high level vision system

The high level vision system (HLVS) uses object models to interpret data

recorded in the iconic/symbolic database and construct an interpretation net-
work. The HLVS uses the integration of hypotheses principle to direct

analysis. This is implemented by the following reasoning steps.

1) Hypothesis generation: the HLVS generates hypotheses about
occurrences of objects in the image. '

2) Hypothesis integration: the HLVS clusters ‘‘related” hypotheses
together.

3) Hypothesis abstraction: the HLVS computes a ‘“‘composite hypothesis”
for each cluster.

4) Hypothesis verification: the HLVS selects hypotheses and verifies them
by computing values for those attributes which are not completely

-6-
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constrained.

The HLVS performs the reasoning iteratively. At the end of each itera-
tion, the HLVS checks whether the “‘goal’’ is accomplished by activating the
QAM. If the goal is accomplished or no more interpretations can be con-
structed, the construction process terminates and the status of the analysis is

available through the QAM.

1.2.3. Query-answering module

Potentially, SIGMA constructs all possible interpretations for an image.
However, SIGMA needs to select, among many interpretations, a good one as
its conclusion. Instead of finding a ‘‘best interpretation’’, we model this selec-
tion process as a database query answering process. A program (QAM) was
developed to answer simple queries about the interpretation network and to

display the associated image structures.

The goal of the analysis is provided to the QAM as a query. Whenever
the QAM is activated (by the HLVS), it matches the goal with the interpreta-
tions already constructed. If any interpretation that satisfies the goal is
found, the QAM enters into an answer mode and provides a query-answering
capability for selecting ‘‘good interpretations’ and displaying the explanations

for these interpretations. .

-7
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1.3. Outline of the paper

, We first present the knowledge representation paradigm used in SIGMA.
In Section 3, we discuss a framework for performing hypothesis integration
and abstraction. This is followed by a detailed description of the system con-

structed based on this framewcrk. Conclusions are presented in the final sec-

tion.

-8
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2. Representation of object models

1. What to represent?

The knowledge representation formalism determines a general framework
for organizing the necessary knowledge into a knowledge base and supports a
powerful inference mechanism for guiding the recognition of a specific scene.
An appropriate knowledge representation tool can often simplify the task of
transferring problem domain expert knowledge into knowledge bases in com-

puter systems.

Consider the following house model:

A house is ‘“‘rectangular’” or “L-shaped’’; its area is larger than
1000 square feet but no larger than 2500 square feet. A house usu-
ally belongs to a group of houses which are on the same side of a
road. Roads can be found near the house. Usually, the road is
parallel or perpendicular to the house and a driveway connects the
road to the house.

Based on how an [US uses such a model to locate houses in a given image, one
can categorize this scene knowledge into the following classes.

1) What to look for. This class of knowledge describes the appearances of
objects (e.g., the type of image structures associated with objects.) In the
house example, the appearance of the house is a homogeneous compact rec-
tangular region. To locate houses, an [US segments the input image and
identifies as houses those regions which are rectangular and compact and
whose sizes are between 1000 and 2500 square feet.

2) Where to look. This class of knowledge includes the geometric and topolog-
ical relations between objects. The knowledge base might, for example,
specify (based on connectivity, relative orientation, etc.) relations between

-9
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‘riveways, houses, and roads. An IUS might, if one of these objects is
discovered (say a driveway), use this relation to initiate and constrain the
search for other objects (e.g., a connected house and road) not yet discovered.
An JUS might also use such relations to examine whether a house, a driveway,
or a road already discovered satisfy the required relations.

3) When to look. This class of knowledge describes strategies regarding the
application and confirmation of relations. One the one hand, we often want to
postpone applying a specific piece of relational knowledge until sufficient
information has been obtained to strongly suggest that the relation may be
applicable. On the other hand, since the confirmation process often involves
the searching of image structures associated with other objects, we might also
want to postpone the confirmation of a specific relation until a sufficient
description of the object to be searched is collécted. For example, when the
TUS generates a house hypothesis, instead of searching for an image structure
associated with it immediately, the IUS might postpone the search until a
sufficient description of the house (e.g., shape, intensity, etc.) is available.

T,

A principal objective of this research is to develop a representation
scheme which simplifies the task of capturing domain knowledge as a
knowledge base for IUS’s. This section presents the knowledge representation
scheme used in the SIGMA system. Note that the scene model is used mainly

by the HLVS (High Level Vision System) module in SIGMA.

2.2. Basic representation primitives

Our representation formalism is based on frame system theory [Mins75],

semantic networks [Wino75] [Hend79}, and an object oriented problem solving

style [Stee79] [Wein80] [Gold83]. In SIGMA, object models are represented as
a graph structure of nodes and arcs. Objects are described by ‘‘frames’ (nodes

in the graph structure) while relations between these objects are described by

“‘rules”” and “links” (arcs in the graph structure). In such a formalism, domain
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knowledge is built around a set of objects and a set of operations that can be

applied to them.

The basic entities of the representation are called frames and are used to
model abstract objects in the problem domain such as ‘‘house” or ‘‘road”.
Each frame may have many associated descriptions that are defined by slots.
Slots are similar to ‘‘property lists’ in LISP. Each slot is a list which contains

an indicator (i.e., name) and a value.

In addition to slots where values are recorded, we can also associate with
frames all the knowledge which is used to compute values of slots. We

represent this type of knowledge as rules.

Rules used in this context are procedural--i.e., the knowledge about how
to compute values of slots is encoded in programs. As mentioned above, these

‘‘programs’’ are written using an object-oriented programming style.

Objects in the scene domain are often structured into hierarchies. It is
often natural and convenient to preserve these hierarchies when we construct
the scene model. Links are used to describe the hierarchical relations between

objects.
One object hierarchy often used is the generalization/specialization
hierarchy; CAN-BE and AKO links are employed to describe it. Link CAN-

BE describes a frame and its specializations while link AKKO describes a

frame and its generalizations.

-11-




AL A

7'\ \ \ .A‘_.)\_‘

A T A T A S A WV S R S O

Properties are inherited through the AKO link. This usage is similar to

the “property inheritance” in semantic networks ( [Moor79], [Nils80].) All the
knowledge recorded in frames that are linked to a father frame by the AKO
link is inherited by that frame. For example, both the RECTANGULAR-
HOUSE and the L-SHAPED-HOUSE have centroid, shape-description, front-
of-house, and connecting-driveway slots. Also, both the RECTANGULAR-
HOUSE and the L-SHAPED-HOUSE can use rule Fj .4, to compute the

connecting driveway.

Often, the HLVS needs to reason across the CAN-BE link. For example,
suppose the HLVS needs to compute the shape of a house. The HLVS is not
able to do the computation since there is no such rule recorded in the HOUSE
frame. Instead, the HLLVS needs to reason about what specialization to choose,
i.e., RECTANGULAR-HOUSE or L-SHAPED-HOUSE. The strategies for this
type of reasoning are called specialization strategies and are encoded as rules
and recorded in frames. Attaching such search strategies using CAN-BE links

is similar to the process of ““plan elaboration’ in Garvey's system [Garv76]

As an example, suppose that there are two type of houses, rectangular
and L-shaped, in community A. Every house has a driveway. However, each
type of house has a different appearance. Suppose F,, 4y, is a rule which
computes the shape description of a rectangular house, and Fyyeyey is
another rule which finds the driveway connecting to a rectangular house. Rule

F4rivewsy computes the driveway of a house. We can write the house model as

-12-
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shown in Figure 2-1. In this model, the HOUSE frame is a generalization of
the L-SHAPED-HOUSE frame and the RECTANGULAR-HOUSE frame while
the L-SHAPED-HOUSE frame and RECTANGULAR-HOUSE frame are spe-
cializations of the HOUSE frame. Their hierarchical relations are shown in

Figure 2-2.

2.3. Instantiation of a frame

Frames are the prototypes of objects. The SIGMA system uses frames as
models to construct interpretations of the image by making instances of
frames. An instance is a copy of a frame. The process of making instances is
called instantiation. At instantiation, values can be assigned to slots. These
values may be the ‘‘defaults” (specified in the frame definition) or may be
computed using rules. Since all instances are recorded in the iconic/symbolic
database in the HLVS as basic database entities, we use the term Database
Entities (DE’s) interchangeably with the term ‘“‘instances’ in the rest of the
paper.

An important property of an object is its appearance. During the
analysis, the HLVS needs to direct the LLVS (Low Level Vision System) to
process theAimage and locate image structures which are associated with
objects. Some objects’ appearances are defined in terms of image structures

that can be directly computed by the LLVS. Those frames which define such

objects are called primitive frames. Frames which are not primitive are called

ACRACRAVIIA N el Sl Al bl Sad Nalh - lnd Sl Shd Sl Af
ARl Y e e .-




non-primitive frames.

Depending on what is known about the appearance of an instance, an
instance can be in one of the following two states: verified, which indicates
that the appearance of the instance is some already located image structure or

is a function of the appearances of verified instances; and hypothetical, which

indicates that the appearance of the instance has not been determined.

In addition to the appearances of objects, the HLVS also uses the iconic
description of a frame during its reasoning. The iconic description specifies an
area in the image and its definition is specified by a rule. During the
hypotheses integration, the HLVS uses the iconic descriptions to reason
whether two DE’s are related (explained in Section 3). The use of iconic
description in SIGMA is similar to the use of ‘‘functional areas’” in Mckeown's

SPAM aerial interpretation system [McKe84].

The values recorded in instances may be updated during the analysis.
Every instance has a special numerical value which is called the strength of
the instance. The method used to compute strength is described as a pro-
cedure, say Piiengen in the frame’s definition. Upon instantiation, a strength
is computed for each instance. Whenever the values recorded in an instance
are updated, the strength of the instance is also recomputed by reevaluating
Pitrengtn» The HLVS uses such values to control its focus of attention mechan-

ism.
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Suppose one defines the appearance of a house (house frame) as a rec-
tangular compact region and a row of houses (house-group frame) as the
union of the appearances of all the houses in a house-group. Then the house
frame is primitive while the house-group frame is non-primitive. In SIGMA,
in order to locate a house-group, the HLVS first generates hypotheses about
the location of member houses and then direct the LLVS to locate each house

individually.

Now, suppose that the LLVS located a rectangular compact region, R,.

The HLVS will generate a house instance, H,, whose appearance is R, and

mark it as a verified instance. However, suppose the HLVS further generates
neighboring house predictions for f,, say H, and H;. Both H, and Hj are
hypothetical instances since the appearances of these instances have not yet

been determined from the image.

2.4. Representing relations between objects

A major portion of the scene domain knowledge involves relations
between objects. However, these relations must be represented in forms that
can be directly used by the HLVS. Our approach is influenced by production
rules [Davi77] and the planning paradigm used in Garvey’s vision system

[Garv7s].

Suppose we have the following house-road relation:

........................................




A road road, is along a house housey if the predicate along
(roady,houseg) is true.

" There are at least two potential uses of this relation by the HLVS:

- HLVS uses the relation to check whether road road, is along
house house,.

- HLVS uses the relation to direct a search for a road along house
houseg.

In order to support multiple uses of a relation by the HLVS, we use a
test-hypothesize-and-act strategy to describe relations. A binary relation

REL(O,,0,) between objects O, and O, is represented using two functional

descriptions:
01 = F(Oz) and 02 = G(Ol).
A Program F computes the object expected by object O, and is recorded in
\ object frame O, as a rule. Program G computes the object expected by object
? O, and is recorded in object frame O, as a rule also.

P

As noted earlier, control knowledge for the use of relations and control
f knowledge for directing search are both required by the HLVS. We represent

such knowledge as predicates associated with rules.

We present our rule representation scheme as follows:

.................




............................

A rule is composed of three parts:

< control-condition>
< hypothesis>
<action>.

< Control-condition> is a predicate. It indicates when a rule can potentially
be applied. <Hypothesis> specifies the description of a desired object that is
created when the <control-condition> evaluates t;o true. <Action>
describes the code to be evaluated if <hypothesis> is verified. I.n general,
<action> can add facts to or delete facts from the iconic/symbolic database

of the HLVS.

The house-road relation can be written as a rule in the HOUSE frame as

follows (Figure 2-3):

To compute a road along house house,, we always generate a hy-
pothesis road, with the following slot values:

road.orientation:
greater than (housey.front-of-house + 80 degrees) but less than
(housegy.front-of-house 100 degrees).

road.width:
greater than (houseg.width * 0.3) but less than (housey.width *
0.5).

road.centroid:
resides within REGION(housey.centroid + T(houseg.front-of-
house)).

T(.) is a function. If the hypothesis road, is verified by some road
roady, then road road, is along house house,.

-17-
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Figure 2-4 shows a model for suburban housing developments. Objects
are described by nodes (square) and relations are described by arcs. In this .

model, Rectangle and Picture-Boundary are the “primitive frames’.

The HLVS makes use of the different parts of a rule to perform its rea-

soning. We discuss this in Section 4.
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3. Integration of hypotheses

3.1. Introduction

Consider a binary relation REL(O,,0,) between two classes of objects,
O, and O,. This relation can be .used as a constraint to recognize objects from
these two classes by first extracting image structures which satisfy the
specified appearances of O, and O,, and then checking that the relation is
satisfied by these candidate objects (Figure 3-1). In this bottom-up recognition
scheme, analysis based on relations cannot be performed until image struc-

tures corresponding to objects are extracted.

In general, however, some of the correct image structures fail to be
extracted by the initial image segmentation. So one must, additionally, incor-
porate top-down control to find image structures missed by the initial segmen-
tation. Such top-down processes use relations to predict the locations of
missing objects, as in the system described by (Garvey [Garv76], Selfridge

[Self82])

As noted above, the use of relations is very different in the two analysis
processes : consistency verification in bottom-up analysis and hypothesis gen-
eration in top-down analysis. An important characteristic of our hypothesis
integration method is that it enables the system to integrate both bottom-up

and top-down processes into a single flexible spatial reasoning process.




As will be described in Section 4, the HLVS first establishes local environ-
ments. Then, either bottom-up or top-down processes are activated depending
on the nature of the local environment. The following sections describe the

concepts and characteristics of this process.

3.2. The representation of database entities

All instances, hypothetical or verified, generated by the HLVS are
recorded in a database. In the rest of this section, we use the term database
entity (DE) to refer to instances recorded in the database. In addition, we use

the term Aypothesis to refer to instances in the hypothetical state.

The description of each DE consists of two parts. One part is the iconic
description. This description is a region in the image which indicates where
the DE may be located. It is generated by the rule which specifies the iconic

description of the frame used to generate the DE.

The second part is the symbolic description, which includes the values
filled into the slots of the DE, and the set of constraints imposed on these
values. These constraints are represented by a set of linear inequalities in one

variable (the slot name).

3.3. Consistency between a pair of DE’s

“Related’” DE’s are integrated and analyzed together. In SIGMA, ‘“‘relat-
edness”” between DE's is defined in terms of ‘‘consistency’ between pairs of

DE’s. A pair of DE’s, DE| and DE,, are said to be consistent if the following
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conditions hold:

1) The iconic descriptions of the DE’s must intersect. It is also possible to
impose some requirements on the size and shape of the area of intersection.

2) The DE’s are compatible. Let OP be the intersection arising from two
DE’s, and let F, and F, denote the frames from which DE, and DE, were
copied. DE, and DE, are said to be compatible if F, and F, are linked by
CAN-BE or AKO links. Otherwise, DE, and DE, are said to be incompatible.
This will be explained in more detail in Section 3.5.

3) The constraints imposed on the attributes of the DE’s must be satisfiable.
Every DE has associated with it a set of linear inequalities in one variable
that constrain the permissible values of the DE’s attributes. A simple con-
straint manipulation system is used to check the consistency between the sets
of inequalities by generating the solution space (also represented by inequali-
ties) to the intersection of those sets. If this solution space is non-empty, then
the constraints are consistent.

3.4. Formation of maximum consistent situations

Consistent Dﬁ’s are combined into situations. These DE’s are said to
participate in the formation of a situation. The P-set of a situation is its set
of participating DE’s. Situation S, is less than situation S; if the P-set of S,
is a subset of the P-set of S;. This ordering is used to structure all the situa-
tions into a situation lattice. Note that a single DE is also a situation. The

rest of this section presents the algorithm used to form situations.

Two DE’s are said to be 2-consistent if they are consistent. In general, a
set of DE’s is said to be n-consistent if every possible subset of (n-1) of the

DE'’s is (n-1)-consistent. Clearly, a set of DE’s is n-consistent if and only if

all possible pairs of DE's in the set are 2-consistent.
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When a DE, say DE,,,, is inserted into the iconic/symbolic database, the
current situation-lattice is updated by first computing the set, U, that con-
tains all DE's whose iconic descriptions intersect with the iconic description of

- DE,,,. Then, we iteratively compute all lists of n-consistent DE’s for those

DE’s in the set U. Each such list of n-consistent DE’s forms the P-set of some

situation. Algorithm 3-1 describes this process.

The mazimum consistent situations are those situations which are the

roots of the situation lattice.

Algorithm 3-1 : Updating the Situation Lattice

Step 1: Suppose the newly inserted entity is DE,,,. Compute the set U.
N=2.
Step 2: Compute the set, R, of all the N-consistent DE’s for the DE’s in

U. Remove any which do not contain DE,,,,.

Step 3: If R is empty, then exit. Otherwise, insert all the elements of R
into the situation-lattice.

Step 4: Increment N by 1. Construct all the pairs for elements in R.
Represent each pair by the union of the members in each ele-
ment. Remove any which is not N-consistent or does not contain
DE,,,. Set R to be the set of resulting N-consistent DE’s.

Step 5: Go to step 3.

...................
.................................................................
LI O I T e P T T TV L S P A I VT RN Y N L R VT TV TR SR Ve e L AL L P P A L I AL




Figure 3-2 shows an example of how the situation lattice is updated when
a DE is inserted. Each DE is represented by a letter. A situation is
represented by all the DE’s in its P-set. Figure 3-2(a) shows the situation lat- -
tice before the insertion of DEg and the iconic descriptions of the DE’s. Sup-
pose that the new DE, DEp, is consistent with DE4, DEg and DEp. The set’

U would then include
DE,, DEg, DE;, DEp, DEg.

The first time that step 3 is evaluated, set R contains the following situations:
DE g, DEgg, DEp.

The second time that step 3 is evaluated, set R contains the following situa-

tion:
DE,pg

The updating stops at the third iteration. Figure 3-2(b) shows the situation

lattice after the updating process.

When a DE, say DE ¢ is being removed from the iconic/symbolic

remov
database, the current situation lattice must also be updated. This can be done

simply by removing all the situations in the situation lattice which are larger

than DE,, ...




Suppose, for example, that DE, is removed from the situation described

in Figure 3-2(b). Figure 3-3 shows the resulting situation lattice.

It is possible that the number of situations in the situation lattice may

grow exponentially. In practice, this does not happen since the number of

participants in a situation is usually quite small, e.g., two or three.

3.5. Constructing the composite hypothesis

A situation is a collection of consistent DE’s. The HLVS selects a situa-
tion and proposes a composite hypothesis which “‘summarizes’ the constraints
imposed on the attributes of all the participating DE’s. The strategy for com-
puting the composite hypothesis is specified by a procedure recorded in the
frame's definition. (Note that two DE’s are consistent only if they are
instances of the same frame or instances of frames in the same
generalization/specializatioh hierarchy. Therefore, all the participants in a
situation must be instances of frames in the same generalization/specialization
hierarchy. The procedure for computing the composite hypothesis is recorded
in the most general frame.) This section presents some strategies for comput-

ing the composite hypothesis.

One simple strategy is to use the solution sets of all the constraints
imposed on the attributes of all the participating DE’s (explained in Section
3.4) as the constraint set of the composite hypothesis. The target object of

the composite hypothesis is the most specialized object expected by all the
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Suppose that the constraint set of DE| is

~ target object = HOUSE,
house.centroid = (100,130),
230 < house.area < 300

while the constraint set of DE, is

% target object = RECTANGULAR-HOUSE,

house.centroid = (100,130),

250 < house.area < 320,
house.region-contrast > 3.

Using this method, we generate the composite hypothesis for DE| and DE, as
follows:
target object = RECTANGULAR-HOUSE,
house.centroid = (100,130),

250 < house.area < 300,
house.region-contrast > 3.

Another strategy is to take the union of all the solution sets of the constraints
imposed on the attributes of all the participating DE’s. Suppose, for example,
that two hypotheses, DE; and DE,, about a road have constraints on their

starting and ending points as follows:
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hypothesis DE,,
target object = road,

road.end-points = { (100,100),(100,150)} .

hypothesis DE,,
target object = road,

road.end-points = { ( 100,125),(100,180)} .

We may want to construct a road hypothesis whose constraint set is the union

of these constraints on DE| and DE,:

target object = road,

road.end-points = { (100,100),(100,180)} .




-------------------------------------------

4. An implementation of SIGMA

4.1. Overview

The goal of SIGMA is to segment the image into image structures which
correspond to the objects specified in the object model. Section 1.3 outlined
the architecture of the SIGMA image understanding system. This section

describes its implementation.

Figure 4-1 illustrates the different stages of the control of SIGMA.
SIGMA first directs the LLVS to perform an initial segmentation of the
image. A set of image structures are computed at this stage. At the second
stage, the HLVS constructs partial interpretations based on the results of the
initial segmentation. However, during the construction, the HLVS may direct
the LLVS to compute more image structures. When all construction activities
finish, SIGMA provides a query-answering module for selecting ‘‘good
interpretations” and displaying the reasoning paths used to derive these
interpretations. During the entire analysis, SIGMA maintains a database
(the iconic/symbolic database) to record all the intermediate results gen-

erated at each stage.

The rest of this section discusses the implementation of SIGMA.

4.2. Description of goals

The Query-Answering Module (QAM) is activated by the HLVS at the

end of each reasoning iteration. The goal of SIGMA is described as a query to




QAM. QAM matches the query with the interpretations already constructed.
If any interpretation matches the goal, QAM enters into an answer mode and

provides an interactive query-answering capability.

Suppose, for example, that the goal is to locate any road whose length is
longer than 300 feet in the image and has at least two houses along it. This

goal can be represented by the following query:
road(x) and (x.length > 300 feet) and (x.number-of-houses >2).

During the interpretation stage, whenever a road instance is constructed
whose length is longer than 300 feet and has at least two houses along it (i.e.,
x is bound to some interpretation constructed by the HLVS), QAM will enter
an answer mode and make the specific road instance that satisfies the goal
available to an interactive program. One can use this program to traverse the
interpretation network (the network which is constructed by the HLVS during
the interpretation process), and display symbolic and iconic descriptions of the

interpretations constructed.

4.3. The initial segmentation

SIGMA starts its processing by directing the LLVS to extract image
structures. The schematic diagram of the initial segmentation process is

shown in Figure 4-2. The set,'], which contains a list of hypotheses about

primitive objects, is used to describe the goal of the initial segmentation pro-




The Initial Segmentation Controller (ISC) sequentially selects hypotheses

from the set I and directs the LLVS to extract image primitives which satisfy
these hypotheses. For each image primitive extracted, the ISC makes an
instance of the frame of which the hypothesis is a copy, and then inserts the

instance created into the iconic/symbolic database.

Suppose, for example, that we want to first extract all regions which
might correspond to house groups and roads in the image. A set which con-

tains the following hypotheses can be used as the set I:

hypothesis 1: /* extract compact and bright rectangles */
target object = rectangle, '
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 400.

hypothesis 2: /* extract elongated rectangles */
target object = rectangle,
in-window = whole image,
7 < rectangle.width < 20,
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

The set I for the initial segmentation could, in principle, be computed
from the scene model, since the appearances of objects are described in terms

of the appearances of “‘primitive frames’’. The ISC could choose those primi-
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tive frames whose appearances are salient (i.e., they can be located ‘‘easily”

*'fvllVfr

by the LLVS) as the I-set. However, this was not implemented in SIGMA; the

I-set is simply given as part of the scene model.

4.4. Construction of partial interpretations

The schematic diagram of the processing involved in constructing partial
interpretations is shown in Figure 4-3. The HLVS iterates the following steps

in this stage:

(1) hypothesis generation,

(2) focus of attention,

(3) composite hypothesis construction,
(4) solution generation,

(5) action scheduling.

Detailed discussions of each step are presented in the following subsections.

4.4.1. Hypothesis generation

For each DE (hypothetical or verified) recorded in the iconic/symbolic
database, the Iconic/Symbolic Database Manager (ISDM) evaluates all the

rules that are ‘‘applicable’.

Suppose I is an instance of frame F. For each rule, say R,, defined in

frame F, the ISDM evaluates the <control-condition> part of rule R,. If the

evaluation result is true, the ISDM performs the following tasks:
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(1) Compute the <hypothesis> part of rule R,, and insert the
computed hypothesis into the iconic/symbolic database.

(2) Insert the <action>> part of rule R, into the Action List which .
records all the actions waiting to be evaluated.

The actions in the action list are called delayed actions. For each
delayed action, there is an associated hypothesis (computed at step 1)
recorded in the iconic/symbolic database. Such a hypothesis is called the

cause of delay of the action.

Note that for rules whose <hypothesis> part is nil, the <action> part
is not put into the action list. Instead, the <action> is evaluated immedi-
ately. At the hypothesis generation stage, the ISDM evaluates, for each
instance in the iconic/symbolic database, the <control condition> of every
rule in the associated frame definition. (This strategy is not efficient. A more
efficient strategy would evaluate only those <control condition> s whose
values are affected by changes made to the attributes of the instance since the

last time the <control condition>s were evaluated.)

The DE's in the iconic/symbolic database are combined into situations.
All the situations are structured into the situation lattice. The Situation Lat-
tice Database Manager (SLDM) updates the situation lattice whenever DE’s
are inserted into or removed from the iconic/symbolic database. The algo-

rithm (3-1) for updating the situation lattice was presented in Section 3.4.
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“Identical instances’” may be created during the construction process of
the HLVS. Two instances are identical if all the values filled in the slots of
those instances are identical. It is necessary to detect identical instances and
replace them by a single instance. This process is called uniﬁcation. of

instances, and is performed during construction of composite hypotheses.

For example, a house group instance containing house instances H, and
H, can be constructed from instance H, by first constructing a house group
instance, say HG,, which contains H, , and then expanding HG, to include
house instance H, (see Figure 4-4(a)). An identical house group instance HG,

can also be constructed from house instance H; (see Figure 4-4(b)).

One natural way to detect identical instances is to examine the P-set of a
situation. For each situation selected by the focus of attention mechanism, the
HLVS examines the instances in the P-set of the situation to find sets of

identical instances.

The HLVS unifies identical instances as follows. All identical instances
are first collected in a set, L. Then the HLVS selects one instance from the set
L, say f,. For each instance I, € L, the HLVS replaces every reference to I, in

the iconic/symbolic database by a reference to instance I,.

Figure 4-5 illustrates the result of unifying HG, and HG, (assuming the

HLVS chooses HG, as ).




4.4.2. Focus of attention

The focus of attention mechanism selects a situation with greatest
strength from the situation lattice. If there are several situations with equal

strength, the HUVS selects one arbitrarily.

For example, Figure 4-6 shows a situation lattice. There are two maximal
consistent situations that can be selected (both situations have strength = 3).

The HLVS can select either one (i.e., Nygy OF Nypp)-

The situation selected by the focus of attention mechanism is given to
the Composite Hypothesis Constructor to construct the composite hypothesis.

The construction of composite hypotheses was discussed in Section 3.5.

4.4.3. Solution generation

The Solution Generator (SG) computes solutions for the composite
hypothesis. The SG obtains/constructs instances to satisfy the composite

hypothesis by one of the methods discussed in the following paragraphs.

First, the SG may discover an existing instance in the iconic/symbolic
database that satisfies the composite hypothesis. In this case, the SG returns
the instance found as the solution. In general, it may be necessary to search
the iconic/symbolic database to find some instance which satisfies the compo-
site hypothesis. However, since the composite hypothesis is constructed by
taking the solution space of all the constraints imposed on the DE’s partici-

pating in the situation (see Section 3.5), to find an existing instance which




T ——— B A el . SR o

satisfies the composite hypothesis, the SG needs only examine the P-set of the

selected situation and use any instance in the P-set as the solution.

Suppose the SG cannot find any instance in the iconic/symbolic database

that satisfies the composite hypothesis. There are two possibilities:

(1) the target object of the composite hypothesis is a primitive ob-
ject (such hypotheses are called primitive hypotheses),

(2) the target object of the composite hypothesis is not a primitive
object (such hypotheses are called non-primitive hypotheses).

In the first case, the SG first directs a top-down segmentation by provid-
ing to the LLVS the descriptions of the composite hypothesis. Then the SG
creates instances based on the results of the LLVS. Finally, the instances

created (if any) are returned as a solution.

In the second case, no top-down segmentation is performed. The SG

simply returns the composite hypothesis as the solution.

4.4.4. Action scheduling

The Action Scheduler (AS) schedules the actions in the action list using
the solution provided by the SG. Three possible types of solutions may be

provided:

~34-
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(1) nil,i.e., the hypothesis cannot be verified,
(2) an instance,
(3) a composite hypothesis.

580 8 2 5 @

. In both the first and the second cases, the AS selects those <action>s in
- the action list whose ‘‘causes of delay’” are in the P-set of the selected situa-
tion. Let the solution be I, the actions selected be A,, ... ,4,, and their
causes of delay be H,, ... H, respeétively. The AS performs the selected

actions sequentially:

(a) replace all the references to H; in action A; by I,
(b) evaluate A,,

N (c) remove H; from the iconic/symbolic database, or update the
- attributes of H; (we will discuss this in more detail in Section 4.5).

In the third case, the AS marks the composite hypothesis, say CH,, as
partially processed and inserts it into the iconic/symbolic database. The AS
also marks the currently selected situation, say S, as unconcluded. The

-\ hypothesis CH, is said to be derived from the situation S,. We will present a

more detailed discussion of the effects of such processing in Section 4.4.4.1.

o Table 4-1 summarizes the terms defined in the previous paragraphs.

2 The removal of hypotheses from the iconic/symbolic database has the
j following side effects:

(1) If a hypothesis, say H,, is removed from the database, then all the




Table 4-1. Glossary.

Primitive hypothesis:
A hypothesis whose target object is a primitive object.

Non-primitive hypothesis:
A hypothesis whose target object is a non-primitive object.

Unconcluded situation:
A situation which was selected by the focus of attention mechanism,
but for which the Solution Generator cannot yet compute a solution.

Partially processed hypothesis:
A composite hypothesis, recorded in the iconic/symbolic database,
which is computed for some unconcluded situation.

situations in the situation lattice whose P-sets contain H, are also removed
from the situation lattice.

(2) If an unconcluded situation is removed from the situation lattice in (1),

then the hypotheses which were derived from the situation are also removed
from the iconic/symbolic database.

The updating of attributes of hypotheses is implemented by removing the

original hypothesis and inserting a new hypothesis.

When all the actions selected are evaluated, the action scheduler ter-

minates, and the next cycle of hypothesis construction begins.
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4.4.4.1. Computing solutions for a non-primitive composite

hypothesis

The SG does not directly propose solutions for a non-primitive composite -
hypothesis. Instead, a top-down parsing approach is used to compute. the
solution. Suppose the composite hypothesis constructed for a situation , say
Sos is CH,. To compute the solution for CH,, we first generate a set of
hypotheses H;,1<t<n and compute the solution for each H;. The solution for

CH, can be computed from the solutions for H,1<i<n.

To support such an approach, we associate with each non-primitive
frame a decomposition strategy (represented as a rule) which describes how to
generate a new set of hypotheses to be verified, and how to compute a solu-
tion for the non-primitive frame using the solutions for the generated

hypotheses.

For example, the rule for the decomposition strategy of a

RECTANGULAR-HOUSE frame is

Rule Rﬁrct-order—properﬁea'
< control-condition> : true,

< hypothesis> :
H = F(RECTANGLE,self),
<action> :
if H=nil then conclude(nil)
else conclude(make-instance(RECTANGULAR-HOUSE, H)).

This rule indicates that a RECTANGULAR-HOUSE instance can be created
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if a RECTANGLE instance which satisfies the attributes specified by Fy is

created.

As discussed in Section 4.4.4, the Action Scheduler (AS) marks the non-
primitive composite hypothesis as partially processed and inserts it into the
iconic/symbolic database. The AS also marks the situation selected as uncon-
cluded. Partially processed hypotheses and unconcluded situations are pro-

cessed by other modules of the HLVS in the following ways:

(1) If a situation, say S, is marked as ‘‘unconcluded*, then all the situations in
the situation lattice which are less than S are also marked as unconcluded.
The focus of attention mechanism does not select any unconcluded situation.
This strategy is based on the observation that if no conclusion can be drawn
from the analysis of a situation, say S, then the analysis of all the situations
which are “less than” S (i.e., composed of a subset of the instances of S) can
be postponed.

For example, by marking situation N, in Figure 4-6 as unconcluded, all

the situations that are less than N, are also marked as unconcluded (i.e.,
N;,H;1<1<3). .

(2) The function “‘conclude” indicates that a solution, say I,,, has been com-
puted for an unconcluded situation, say S. Whenever this function is
evaluated, the HLVS schedules S as the situation to be selected in the next
iteration cycle and the solution proposed for the composite hypothesis of this
situation is I .

(3) Since a partially processed hypothesis, say H, is the composite hypothesis
constructed for some unconcluded situation, S, H should not participate in the
formation of new situations with any DE’s in the P-set of S. HLVS uses the
more efficient strategy of not allowing a partially processed hypotheses to par-
ticipate in the formation of any situations.

(4) In the hypothesis generation process, only the rules which describe the
decomposition strategy can be evaluated for partially processed hypotheses.
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All the hypotheses generated are inserted into the iconic/symbolic database.

(5) The removal of a partially processed hypothesis from the iconic/symbolic
database causes the removal of all the hypotheses in the database which are
generated by the decomposition strategy.

Suppose, for example, that the situation N,y shown in Figure 4-6 is
selected by the focus of attention mechanism and the composite hypothesis

constructed, say CH,, is:

target object : RECTANGULAR-HOUSE;

Since RECTANGULAR-HOUSE is not a primitive frame, the SG returns CH,
as the solution to the situation Vjg. The AS marks V|, as unconcluded and

inserts CH, into the iconic/symbolic database.

‘At the subsequent hypothesis generation process, CH, activates the rule
Rgrst order-properties 10 the RECTANGULAR-HOUSE f{rame and creates

hypothesis Hy:
target object : RECTANGLE;

Figure 4-7 shows the relation between CH, and Hy and the action which is

delayed by Hy. The resulting situation lattice is shown in Figure 4-8.

Suppose a RECTANGLE instance, say Ip, is proposed to Hy by the SG.

The AS evaluates the action whose cause of delay is Hy and:
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(1) creates a RECTANGULAR-HOUSE instance, say gy,

(2) evaluates the function ‘“‘conclude’.

The evaluation of the function ‘‘conclude’” indicates to the HLVS that situa-
tion Vjg is to be scheduled in the next iteration cycle and the solution pro-

posed for CH, is Ipy.

At the next iteration, the SG proposes Ipy to the hypotheses in the P-set
of Ny (i.e., Hy, Hy, Hy). Those actions whose causes of delay are H,, H,, and
Hj are now evaluated by the Action Scheduler. Suppose H,, H,, and Hj are .
removed after the evaluation of these actions. F igure 4-9 shows the resulting
situation lattice. Note that this is usually the case when an appropriate solu-

tion is proposed to the hypotheses.

The processing of partially processed hypotheses and unconcluded situa-

tions are summarized in Table 4-2.

4.5. A taxonomy of actions

In this section, we discuss a taxonomy of the actions that are often used
to specify the scene domain knowledge. The term action in this section refers

to the activities described in the <action> part of a rule.

One type of action is the filling in of attributes of an instance. For

example, a rule in the HOUSE-GROUP frame is:
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Table 4-2. Summary.

Unconcluded situation:
- Will not be selected by the focus of attention mechanism.
- If a solution is proposed by the SG for some unconcluded situation,
the HLVS schedules that situation in the next iteration cycle.

Partially processed hypothesis:
- A composite hypothesis for some unconcluded situation.
- Recorded in the iconic/symbolic database.
- Does not participate in the formation of any situations.
- Removal of a partially processed hypothesis, H, causes the removal of
all the hypotheses generated by H.

< control-condition> : true
<hypothesis> : H = AR(self,ROAD),
<action> : self.along-road = H.

This rule specifies that if a ROAD instance which satisfies H is found, fill it in

the slot ‘‘along-road’ of the HOUSE-GROUP instance.

I addition to filling in attributes, actions ‘often create new instances or
unify several instances (as described in Section 4.4.1). Such actions are
described by two functions:

- “make-instance’ : create an instance and insert it into the iconic/symbolic
database;
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- “unify-instance’ : unify a list of instances in the iconic/symbolic database
K into a single instance.

For example, a rule in the RECTANGLE frame is:

< control-condition> : IS-RECT-HOUSE(self)

< hypothesis> : nil,

<action> :
make-instance(RECTANGULAR-HOUSE,F (self)).

This rule describes the following piece of knowledge:

“If a RECTANGLE instance which satisfies the ISSRECT-HOUSE criteria is
created, then create a RECTANGULAR-HOUSE instance using function F
and insert it into the iconic/symbolic database.”

Similarly, the following piece of knowledge:

“If more than one HOUSE-GROUP instance is filled in the ‘‘belongs-to” slot
of a HOUSE instance, replace it by another HOUSE-GROUP instance which
is created by the function COMBINE-H.”

P ey

can be described by the following rule in the HOUSE frame:

N < control-condition> :
if number-of-elements(self.belongs-to) > 1,

< hypothesis> : nil,

<action> :
unify-instance(self.belongs-to, COMBINE-H(self.belongs-
to)).




Another class of actions deals with the removal of hypotheses and the
updating of the attributes of hypotheses. Usually, hypotheses are removed by
the Action Scheduler after the Solution Generator proposes solutions to them.

However, instead of always removing hypotheses when no acceptable solution

is found, we may want to update the attributes of the original hypotheses
. when more information is available. The function ‘‘update’ is used to describe

the updating of the attributes of a hypothesis.

ﬁ For example, consider the following rule:

< control-condition> : ...
< hypothesis> : H = F(self)
<action> :
if H = nil then update(H,CS,)
else ...

The action specifies that if the solution proposed for H is nil, then the AS
replaces some attributes of hypothesis H by CS,. However, F is not removed
from the iconic/symbolic database. The <action> part is inserted again into

the action list (its cause of delay is H.)

There is yet another category of actions which specifies the constraints
on the evaluation of multiple rules. We describe this type by an example.

Any instance of a HOUSE-GROUP frame can be ‘‘along™ at most one
ROAD instance. Given a HOUSE-GROUP instance, say Iy, we may not yet
know the location of the road along Igg ,i.e., at location F; or at location F,

(see Figure 4-10). One strategy is to create hypotheses about a ROAD at
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both locations. However, once one hypothesis is verified, the other hypothesis

must be removed.

The above knowledge is represented as follows:

Rule R,.

< control-condition> : true,

< hypothesis> : H; = F(self),
<action>> : self.along-road = H|,

Rule R2.

< control-condition> : true

< hypothesis> : H, = F(self),
<action>> : self.along-road = H,.

In addition, the following rule for the HOUSE-GROUP frame constrains the

. simultaneous evaluation of R,,R,:

Rule Rcontral'

< control-condition> :
not-null{anyone(R,,R,)),

< hypothesis> : nil, -

<action> :
remove-all(anyone(R,R,)).

where anyone(R,R,)=
if is-evaluated(R,) then R,

else if is-evaluated(R;) then R,
else nil

The above rule specifies that whenever one of the <action> parts of the

rules R, or R, is evaluated, rule R, ., is evaluated which causes the removal

of all the hypotheses that are created by the evaluation of R;.<hypothesis>




or Ry.<hypothesis>.

Suppose a HOUSE-GROUP instance is created. The instance activates
rules R, and R, and generates two hypotheses about the ROAD object. .
Whenever the SG proposes a ROAD instance to cne of the hypotheses, the AS
evaluates one of the delayed actions. and causes the removal of the other

hypothesis.

We summarize the actions discussed in this section in Table 4-3.

4.8. Pursuing alternative hypotheses

It is possible that several hypotheses may be generated at the same time.

This can be represented as the following rule:

Table 4-3. A taxonomy of actions

Action Tvpe | Example

Attributes Filling in of attributes in an instance.
Instances Create instances.

Unify instances.

Hypotheses Remove hypotheses.

Update hypotheses.

Rules Constrain the simultaneous evaluation
of several rules.
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if <control-condition> then

< hypothesis 1> <action 1>
or

< hypothesis 2> <action 2>
or

< hypothesis n> <action n>

Whenever <control-condition> evaluates to true, all of the <hypothesis>s
can be generated. These hypotheses are called alternative hypotheses and we
assume that at most one of the hypotheses is in fact true. However, it is
difficult to decide which one should be pursued first, since a promising selec-
tion may turned out to be incorrect as new facts (generated by resegmenta-

tion) are obtained.

In SIGMA, all the alternative hypotheses are generated and p‘articipate in
the hypothesis integration process. However, the associated actions of these
alternative hypotheses are 'not evaluated (put in the delayed-action queue).
When any one of the alternative hypotheses is verified, it is left to the associ-
ated action to decide whether other alternative hypotheses should be pruned.
On the one hand, this strategy allows multiple alternative hypotheses to be
pursued simultaneously. On the other hand, expert domain knowledge, which
can be described in a rule, can be used to prune unpromising hypotheses when

enough facts are known.

......
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4.7. The selection of good interpretations

Potentially, SIGMA could construct all possible interpretations for the
image. It is natural to require that no region be interpreted as two different
objects in the scene model. However, in SIGMA, a region may be interpreted
as several objects (e.g., an elongated region might be interpreted both as a

road or a driveway). Intersecting image structures may be used to construct

DE'’s whose iconic descriptions should never intersect. A pair of DE’s whose
ﬁ iconic descriptions intersect while the scene model specifies otherwise are
called conflicting DE’s. The associated interpretations are called alternative

interpretations.

For a set of conflicting DiZ’s, we need to select a DE which ‘“‘best’ inter-
prets the image. It is possible to design an algorithm to select S}lch “best”’
interpretations. However, we did not investigate this issue in SIGMA.
Instead, we model the final selection process as a database query answering
- process. A program (QAM) was developed to answer simple queries about

DE’s in the interpretation network and to display the iconic descriptions of

the DE’s selected.
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5. Examples

5.1. Introduction

This section presents detailed examples of the application of SIGMA to
the analysis of a high resolution aerial image to locate houses, roads, and

driveways in a suburban scene.

We first present an example of the initial segmentation process. Then we
discuss how the HLVS analyzes the image in several typical situations.

Finally, we show the results of analysis by SIGMA on an aerial image.

5.2. Initial segmentation

The image used in the example is a 250 * 140 window of an aerial image
(Figure 5-1) with intensities in the range of 0 to 63. The scene contains

houses, roads, and driveways.

5.2.1. Initial segmentation goals

We want to locate houses and roads in the image. Since their appear-
ances are either compact rectangles or elongated rectangles, and they are usu-
ally brighter than the background, the following hypotheses are used as the I-

set of the initial segmentation process:
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- hypothesis Hy,;. The LLVS selects the following segmentation operators

. their selection criteria evaluate to false.

/* extract compact and bright rectangles */
hypothesis Hy;y:
target object = rectangle,
in-window = whole image, .
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 360.

/* extract bright and elongated rectangles */
hypothesis H, ;40

- target object = rectangle,

in-window = whole image,

8 < rectangle.width < 20
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

5.2.2. Verifying hypothesis H;;,,

The Initial Segmentation Controller (ISC) first selects hypothesis H,,.

The ISC activates the LLVS to compute image primitives that satisfy

arranged in descending order of their priorities as follows:

Blob finder
Upper threshold method

The Ribbon finder and the Lower threshold method are not selected since
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The LLVS activates the Blob finder first. The Blob finder first convolves
the original image with a Laplacian operator. Then it computes the positive
connected regions in the convolved image (Figure 5-2). The regions computed
by the Blob finder which satisfy the constraints of H,,, are shown in Figure

5-3.

Since the set of results computed by the Blob finder is not empty, the
LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.3. Verifying hypothesis H,;,,,

The ISC then selects hypothesis H,;;p,,- The ISC activates the LLVS to
compute regions which satisfy hypothesis H,;;,,. The segmentation operators
selected by the LLVS for this task arranged in descending order of their prior-

ities are as follows:

Ribbon finder
Upper threshold method

The Blob finder and the Lower threshold method are not selected since their

selection criteria evaluate to false.

The LLVS activates the Ribbon finder first. The Ribbon finder first com-

putes the skeletons of the positive regions shown in Figure 5-2. The resulting

skeletons are shown in Figure 5-4.
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Finally, the Ribbon finder decomposes these skeletons and computes the
skeletons for the ribbons. Figure 55 shows the skeletons of the ribbons com-

puted by the Ribbon finder which satisfy the constraints of hypothesis H,;;,,.

Since the set of results computed by the Ribbon finder is not empty, the
LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.4. Generating instances

The ISC collects the results computed by the LLVS, creates RECTAN-

GLE instances, and inserts them into the iconic/symbolic database.

There are 26 RECTANGLE instances created at this stage. Figure 5-6
shows the iconic descriptions of these instances. Note that some of the

instances intersect.

’

5.3. Constructing partial interpretations

A situation is classified into one of the following classes based on how the

Solution Generator computes its proposed solution:

Case 1: The SG discovers an existing instance in the iconic/symbolic database

which satisfies the given composite hypothesis.

Case 2: The SG cannot find any instance in the iconic/symbolic database
which satisfies the given composite hypotheses. The composite hypothesis is

non-primitive.
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Case 3: The SG cannot find any instance in the iconic/symbolic database
which satisfies the given composite hypothesis. The composite hypothesis is

primitive.

Case 4: The SG obtains the solution from the previous iteration (i.e., the solu-

tion for an unconcluded situation is now computed.)

5.3.1. Case 1--Discovering an existing instance

Consider the situation shown in Figure 5-7. The relations between the

DE’s shown in this figure are described in Table 5-1.

Figure 5-8 shows the portion of the interpretation-network which is

related to this situation.

Assume the focus of attention mechanism selects situation S, whose P-

set is as follows:
{ DEI,DE3,DE,} .

Suppose the composite hypothesis, say CH,, computed for S, is :

target object = ROAD,

Since the P-set of the situation S, contains an instance, DE,, the SG proposes

it as the solution to the composite hypothesis constructed for this situation.
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The AS activates those actions whose causes of del are DE, and DE; respec-
tively. Figure 5-9 shows the resulting interpretation network. Note that
hypotheses DE, and DE, are removed. This is caused by a control rule in the
HOUSE-GROUP frame which specifies that each HOUSE-GROUP instance

can be along at most one road.

5.3.2. Case 2--Decomposing a hypothesis

Consider the situation shown in Figure 5-10. The relations between the

DE'’s shown in this figure are described in Table 5-2.

Figure 5-11 shows a portion of the interpretation network related to this

situation.

Assume the focus of attention mechanism selects the situation S; whose

P-set is
{ DEI,DEQ} .

Assume the composite hypothesis, say CH,, computed for S, is

target object = DRIVEWAY,

The SG cannot find any existing instance that satisfies CH,. Since CH, is

non-primitive, the AS marks it as partially processed and inserts it into the
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iconic/symbolic database.

At the subsequent iterations, CH, activates the rule Rg, . orderproperties Of

frame DRIVEWAY to generate hypothesis DEj:

databaseentity DE3:
target object : RECTANGLE,

end-database—entity.

Suppose the action which is delayed by DEj; is Afrur order—propertiess W€ Will
revisit this example in Section 5.3.4. Note that DE; can participate in the
formation of situations with other DE’s in the iconic/symbolic database. Fig-
ure 5-12 shows the resulting interpretation network after DE; and CH, are
inserted into the iconic/symbolic database. Note that CH, is marked as par-
tially processed hypothesis. Table 5-3 summarizes the relations between the

[ .
DE s, action Aﬁrat—order—prapertiem and Sl'

5.3.3. Case 3--Directing the segmentation

Suppose the composite hypothesis, say CH,, given to the SG is primitive.
The SG activates the LLVS to compute regions which satisfy the constraints
provided by the SG. The regions computed by the LLVS are used by the SG
to create RECTANGLE instances. The SG then proposes those created
instances which satisfy the constraints of CH, as solutions. If no instance is

computed, the SG proposes nil as the solution. We illustrate the process used




by our system in the following two examples.

Suppose the composite hypothesis, say CH,, given to the SG is:

v s 'l. .l’. v

target object = RECTANGLE,
in window : W),
rectangle.elongatedness < 10,
rectangle.compactness < 18,
275 < rectangle.area-of < 325.

The window W, is shown in Figure 5-13.

The LLVS first activates the Blob finder and fails to compute any region.

Then the LLVS activates the Upper threshold method to compute regions. A

region is successfully computed by setting the threshold value at 24. Figure

;Z: 5-14 shows some of the intermediate results of the segmentation process. The
> measurements (the area and the compactness of a region) are shown for the

largest region extracted at each specified threshold value.

The LLVS returns the computed region to the SG. The SG checks the

EAENEARAE S

features of the region and creates a RECTANGLE instance DEpgcr and pro-

pose it as the solution. Figure 5-15 shows the RECTANGLE instance created

by the SG.

Suppose the composite hypothesis CH, is again given to the SG. How-

ever, the window W, is as shown in Figure 5-16.

] The LLVS activates the Blob finder, the Upper threshold method, and

N the Lower threshold method and cannot compute any region which satisfies
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the given constraints. The LLVS returns “nil”’ to the SG. The SG then pro-

poses nil as the solution.

5.3.4. Case 4--Analyzing an unconcluded situation

Consider the interpretation net./ork shown in Figure 5-12. Suppose that
at some other iteration the SG computes a solution, say I, for DE;. Action

Afirst-order—properties 1S NOW evaluated by the AS.

Two possible outcomes can be produced by the evaluation of
Afirst-order-propertica Fist, the evaluation of action Ag,. ,rderpropertics 8eNETatES
a solution, say I, for CH,. This causes the HLVS to analyze the unconcluded
situation S, in the next iteration. The SG will propose I, as the solution to

CH,, the composite hypothesis of S,.

Figure 5-17 shows the resulting interpretation network in this case. The
unconcluded situation S), the partially processed hypothesis CH,, and the

hypothesis DE; generated by the ‘‘decomposition method’ are all removed.

Second, suppose no solution is generated by the evaluation of
Afirst-order-propertics 1nStead, the evaluation cause changes to be made to the
attributes of DE3. In this case, situation S; is removed from the situation lat-
tice and new situations are constructed. Suppose DE;, is the updated
hypothesis. Figure 5-18 shows the resulting interpretation network in this

case.
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5.4. A complete example

In this section, we present the result of applying our image interpretation
program to the image shown in Figure 5-1. No explicit goal is given to the
system. The analysis terminates when all the hypotheses created are verified

or refuted.

Figure 5-6 shows the RECTANGLE instances generated by the initial
segmentation process. Figure 5-19 shows those RECTANGLE instances
which are interpreted as RECTANGULAR-HOUSE instances (requiring that
200 <rectangle.area-of <400) , and Figure 5-20 shows those RECTANGLE
instance which are interpreted as VISIBLE-ROAD-PIECE instances (requiring
that 6<rectangle.width<12). No RECTANGLE instances are interpreted as

DRIVEWAY instances.

Instead of showing the processing of each situation by the program, we

show only the processing of several interesting situations.

In the scene model, two HOUSE-GROUP instances are identical if they
both share a common HOUSE instance and should be unified to a single
instance. Figure 5-21(a) shows such an example. Let P, and P, denote two
HOUSE instances, R, and R, two HOUSE-GROUP instances, and DE; a

HOUSE hypothesis.

Each HOUSE-GROUP instance creates hypotheses about more houses

that belong to it. The process to unify the house groups is as follows:
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(1) The situation whose P-set is
{DEI,PQ}
is selected by the focus of attention mechanism.

(2) SG proposes HOUSE instance P, as the solution to the composite
hypothesis of situation S,. The evaluation of the action which is delayed by
DE, fills P, in the ‘“‘contains” slot of HOUSE-GROUP instance R;.

(3) Since P, ‘“‘belongs to” two HOUSE-GROUP instauces at the subsequent
iteration, the evaluation of a rule in HOUSE frame unifies R, and R,.

Let us denote the resulting HOUSE-GROUP instance by R,. Figure 5-22

shows the result of the analysis.

Figure 5-23 shows another example. Resegmentation of the image is
required in this example. Let R; denote a HOUSE-GROUP instance, P; a
HOUSE instance, DE; a HOUSE hypothesis. Also let CH; denote a partially
processed hypothesis, and T}, a RECTANGLE instance. These DE’s are not

shown in Figure 5-23. They are used later in this example.

The processes to activates the LLVS to process the image are as follows:

(1) Situation S, whose P-set is
{ DE‘I,DE;,}

is selected. Since the composite hypothesis (target object is HOUSE object) is
non-primitive, a partially processed hypothesis, say CH,, is generated.

..................................................
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(2) At the next iteration, the evaluation of the rule R,y a/ization-strategy Of the
HOUSE frame generates a hypothesis DE; whose target object is
- RECTANGULAR-HOUSE (Figure 5-24(a)).

(3) Situation S, whose P-set contains DEg is selected. Again, a partially-
processed hypothesis, say CH,, about RECTANGULAR-HOUSE is generated.

(4) At the following iteration, the evaluation of the rule Rg .y ,rderproperties OF
RECTANGULAR-HOUSE frame generates a hypothesis DEg whose target
object is RECTANGLE (Figure 5-24(b)).

(5) The SG activates the LLVS to segment the image. A region is computed
by the LLVS (see Figures 5-13, 14, 15). The SG creates a RECTANGLE
instance T.

(6) The evaluation of the <action> of Rprg order-properties Creates a
RECTANGULAR-HOUSE instance P,. Since a solution is now ready for the
unconcluded situation S,, the HLVS schedules it to be processed next. After-
wards, since a solution is now ready for the unconcluded situation S,, the
HLVS schedules it to be processed next. Now, the actions delayed by DE,
and DE; can be evaluated. The resulting interpretation network is shown in
Figure 5-24(c).

(7) P, “belongs to”” two HOUSE-GROUP instances. At the subsequent itera-
tion, the evaluation of a rule in the HOUSE frame unifies | and R,.

Figure 5-25 shows the resulting HOUSE-GROUP instance.

In the scene model, every ROAD instance is smoothly extended from one

ROAD-TERMINATOR instance to another ROAD-TERMINATOR instance.

A ROAD-TERMINATOR is defined to be the boundary of the image. We

present an example in the following paragraphs.




The extension of ROAD instances is similar to the merging of two
HOUSE-GROUP instances discussed above. Figure 5-26 shows two ROAD
instances R, and R,. P, and P, are two ROAD-PIECE instances. DE; denotes
a ROAD-PIECE hypothesis. The extending of ROAD instance R; activates

the merging of R, and R, into one ROAD instance (Figure 5-27).

Figure 5-28 shows another case. R; and R, are two ROAD instances. DE,
is a ROAD-PIECE hypothesis generated by R,. Since R, is not ‘‘connected”

to R,, hypothesis DE, is modified as shown in Figure 5-29.

Figure 5-30 shows yet another case. Road instance R, cannot be extended
any longer. When this is detected, the original ROAD-PIECE hypothesis is

removed and a ROAD-TERMINATOR hypothesis is generated.

Figure 5-31 shows another example. Let DE, denote a ROAD instance,
DE, a HOUSE instance, DE,, a RECTANGLE instance, and DE; a DRIVE-
WAY hypothesis. House instance DE, and ROAD instance DE, create
hypotheses DE, and DE, about the DRIVEWAY object respectively. There is
no DRIVEWAY instance in the iconic/symbolic database which satisfies these
hypotheses. However, there is a RECTANGLE instance, DE,,, which, if inter-
preted as a DRIVEWAY object, would satisfy these hypotheses. Note that
DE,, is not interpreted as a DRIVEWAY object, a VISIBLE-ROAD-PIECE,
or a RECTANGULAR-HOUSE since there are not enough distinguishing

features of DE,, to make these interpretations.
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The HLVS performs the analysis as follows:

(1) A composite hypothesis, CHj, is first constructed for the situation whose
P-set is

{ DEI,DEQ} :

(2) A hypothesis, DEj, about the RECTANGLE object is created by the com-
posite hypothesis CHj.

(3) DE,, satisfies DE;. A DRIVEWAY instance DE,, is created by the
<action> part of the rule Rg.g srder-properties Of the DRIVEWAY frame. The
DRIVEWAY instance DEj, satisfies both DE| and DE,. Figure 5-32 shows the
resulting interpretation network after DE; and DE, are removed.

The resulting interpretation network is shown in Figure 5-33. The iconic
descriptions of the instances created during the analysis are shown in Figures

5-34 and 5-35.

Finally, we present two examples of the final selection stage of the pro-
gram. Figure 5-36(a) shows a RQAD instance whose length is longer than 100.
Instances of related objects are shown in Figure 5-36(b),(c), and(d).

Figure 5-37(a) shows a HOUSE-GROUP instance with more than four

houses. Instances of related objects are shown in Figure 5-37(b) and (c).
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6. Conclusions

This paper has described a model for the development of image under-
standing systems that involves representing scene domain knowledge using
frames and controlling the actions of the system by hypothesis integration.
Using such a framework, we developed a flexible image understanding system
called SIGMA which performs both top-down(goal-oriented) image analysis
and bottom-up construction of composite image structures, and demonstrated

the system’s performance on an aerial image of a suburban scene.

Developing computer systems for visual applications is one way to inves-
tigate how humans see, and also to make computers more useful. As pointed
out by many researchers [Hall79], [Binf82], ima_ analysis systems usually
consist of several types of modules: low level vision modules(e.g., segmenta-
tion) and high level vision modules(e.g., matching, inference). This research
leads to the conclusion that a powerful vision system should rely on a balance
of performance between these two types of modules. The low level modules
should provide descriptive information about the image to the high level
modules and the high level modules should provide ‘“hints” about image
structures to the low level modules. This research is only a small step toward

the construction of general vision systems.
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Figure 1-1. Mappings between the scene and the image.
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Figure 1-2. System architecture f-r the SIGMA image
understanding system.
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Jrame RECTANGULAR-HOUSE;
rules:
F, rectangle ?

links :
AKO : HOUSE;

end —frame

Jrame L-SHAPED-HOUSE;
rules : '
1y L-shape »

links :
AKO : HOUSE;

end -frame

Jrame HOUSE;
slots:
centroid;
shape-description;
front-of-house;
connecting-driveway;
rules:

F, drivevay )

“CAN-BE : RECTANGULAR-HOUSE, L-
SHAPED-HOUSE; .

links

end ~frame

Figure 2-1 Frame definitions for HOUSE, RECTANGULAR-HOUSE,
and L-SHAPED-HOUSE.

Links:

AKO : —_—
CAN-BE : -=->

Figure 2-2 Links between HOUSE, RECTANGULAR-HOUSE
and L-SHAPED-HOUSE frames.
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Figure 2-3 A model of a suburban housing development.
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Figure 2-4. Pictorial description of house-road relation.
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Figure 3-1. Using a relation as a constraint.
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Figure 3-2(a). The situation lattice before the insertion.

iconic descriptions situation lattice

Figure 3-2(b). The situation lattice after the insertion.
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Figure 3-3. The situation lattice after the removal of A.
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Interpretation
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Stage 3: Legend
Selection of Good control flow:=——>
Interpretation data flow: ——>

Figure 4-1. The stages of the control of SIGMA.
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Database Controller (ISC)
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Legend

control flow:e—_>
Image LLVS data flow: —_—>

data: I

programs: -

Figure 4-2. The schematic diagram of the initial segmentation
process.
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Figure 4-3. The schematic diagram of the interpretation stage.
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a house group instance generate hypothesis fill H, in instance HG
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HG 0 ‘

Figure 4-4(a). Reasoning steps for constructing HGO.
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Figure 4-4(b). Reasoning steps for constructing HG].
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Figure 4-5. Unification of identical instances.

Figure 4-6. A situation lattice.
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decomposition
a 9

Target object of CH,:
RECTANGULAR-HOUSE

Target object of Hy:
RECTANGLE

Delayed-action:
if H=nil then conclude{nil)
else conclude{make-instance{ RECTANGLE-HOUSE, H )).

Figure 4-7. Decomposition of CHa'
*

Legend:
unconcluded situation:

r
partially processed hypot;esis<::j;

Figure 4-8. The resuiting situation lattice.
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Figure 4-9. The situation lattice after actions are evaiuated.
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Figure 5-1. An aerial image.

Figure 5-2. Positive « vncc vy rigure L-3. Blobs extracted by
regions. Slob-finder.
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Figure 5-4. Skeletons of the Figure 5-5. Skeletons of the ribbons
connected components. extracted by Ribbon-finder.

Figure 5-6. Iconic descriptions of the RECTANGLE instances generated
based on the initiail segmentation process.
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Figure b-7(b). A depiction of the

Figure 5-7(a). An example (see situation.

Section 5.3.1.)

DE'’s e Generated-b
DE, ROAD instance

| DE;; | HOUSE-GROUP instance
DELZ HOUSEGROUP instance

DE, | ROAD hypothesis DE;;
DE, | ROAD hypothesis DE,,
| DE; | ROAD hypothesis DE,,
DE, | ROAD hypothesis DE; ,

Table 5-1. The descriptions of the DE's.
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- Figure 5-8. Portion of the interpretation network reiated to the situation.
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Figure 5-9. Resulting interpretation network.
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Figure 5-10(b). A depiction of the

Figure 5-10(a). An exampie (see situation.

Section 5.3.2.)

DE's | Type Generated-qu
DE, | ROAD instance
DE HOUSE instance
DE, | DRIVEWAY hypothesis | DE;
DE, | DRIVEWAY hypothesis | DE,

Table 5-2. The descriptions of the DE's.
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ﬁ Figure 5-11. Portion of the Figure 5-12. Resulting interpretation
: interpretation related to the network.
situation.
Action Cause-of-dela;
Afret order ep DE,

Unconcluded-situation | Composite h
S, CH_

thesis

Table 5-3. Relations between the DE's, action A
and S].

first-order-properties’
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i Figure 5-13. A window generated by the HLVS.

Figure 5-14. Intermediate results of the LLVS.
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Figure 5-15. The RECTANGLE instance generated by the HLVS (based on
the resuits computed by the LLVS).

Figure 5-16. Another window gunerated by the HLVS.
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Figure 5-17. Resulting interpretation Figure 5-18. Resulting interpretation
network (when a solution has been network (when no solution has been
generated). computed).

Figure 5-19. Initial set of RECTANGULAR-HOUSE instances.
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Figure 5-20. Initial set of VISIBLE-ROAD-PIECE instances.
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Figure 5-21(a). Two HOUSE-GROUP Figure 5-21(b). Portion of the interpretation
instances (see Section 5-4). network related to the situation.
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Figure 5-23(a). Two HOUSE-GROUP Figure 5-23(b). Portion of the interpretation

jnstances (see Section 5-4). network reiated to the situation.
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Figure 5-24. Snapshots of the interpretation network reiated to R] and R2

(see tigure 5-23) at various stages of the processing.
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Figure 5-25(a). Resuiting HOUSE-GROUP Figure 5-25(b) Resulting interpretation
instance. network.

Figure 5-26(a). Two ROAD instances Figure 5-26(b). Portion of the inter-

(see Section 5-4). pretation network related to the situation,
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Figure 5-27(a). Resulting ROAD
instance.

Figure 5-28(a). Two ROAD instances
(see Section 5-4).
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Figure 5-27(b). Resulting interpretation

Figure 5-28(b). A depiction of the
situation.




Figure 5-29. Hypothesis DE] has been modified.

: Figure 5-30. A ROAD-TERMINATOR hypothesis has been generated.
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Figure 5-31. Iconic description of a situation and its interpretation
network (see Section 5-4).
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Figure 5-32. Resulting interpretation network.
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Figure 5-34. Final results.

Figure 5-35. Final results (cont.).

~
‘
%
"

- At e ™ ATty e et etatar.w R R S N PR IR TR S ST S IR SN
R R TR RS Y - e e e e e e T et e e e e e e e e e S T e e ﬂ
i*ﬁ";’:-"mw:}‘ :1 *a"a ‘..4 ’.a"‘-\:h ,':n',‘) ':n"..ny_- . .':\ DSOS PRI TG YO T A R



g - T, —w w - e
R S R P A S AR R SR SRR C el - i S i S oM A e P e Y -.-.

Figure 5-36. Explanation of a ROAD instance.

Figure 5-37. Explanation of a HOUSE GROUP instance.
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